
ECE 150 Fundamentals of ProgrammingECE 150 Fundamentals of Programming

Douglas Wilhelm Harder, M.Math.

Prof. Hiren Patel, Ph.D.

hiren.patel@uwaterloo.ca dwharder@uwaterloo.ca

© 2018 by Douglas Wilhelm Harder and Hiren Patel.

Some rights reserved.

Douglas Wilhelm Harder, M.Math.

Prof. Hiren Patel, Ph.D.

hiren.patel@uwaterloo.ca dwharder@uwaterloo.ca

© 2018 by Douglas Wilhelm Harder and Hiren Patel.

Some rights reserved.

Reduce

2
ReduceReduce

Outline

• In this lesson, we will:

– Define a reduction of an array

– Look at implementations of various reductions

– See how to extract commonality

– Introduce a reduce function

– Look at the implementation and examples

3
ReduceReduce

Introduction

• We have already discussed algorithms such as:

– Finding the maximum entry of an array

– Finding the sum of the entries of an array

• These are collectively called reductions as they reduce the
information in the array to a single value

– A single piece of information

• Each reduction we have implemented so far
has had its own implementation

4
ReduceReduce

Introduction

• Question:

– Can we find common features between these reductions?

void max(double array[], std::size_t capacity) {

double max_val{ array[0] };

for (std::size_t k{1}; k < capacity; ++k) {

if (array[k] > max_val) {

max_val = array[k];

}

}

return max_val;

}

void sum(double array[], std::size_t capacity) {

double array_sum{ 0.0 };

for (std::size_t k{0}; k < capacity; ++k) {

array_sum += array[k];

}

return array_sum;

}

5
ReduceReduce

Introduction

• Question:

– Can we at least get the index starting at 0?

void max(double array[], std::size_t capacity) {

double max_val{ -std::numeric_limits<double>::infinity() };

for (std::size_t k{0}; k < capacity; ++k) {

if (array[k] > max_val) {

max_val = array[k];

}

}

return max_val;

}

void sum(double array[], std::size_t capacity) {

double array_sum{ 0.0 };

for (std::size_t k{0}; k < capacity; ++k) {

array_sum += array[k];

}

return array_sum;

}

6
ReduceReduce

Introduction

• Question:

– Can we simplify the function bodies?

– In both cases, the updated value is a function of the value and array[k]

void max(double array[], std::size_t capacity) {

double max_val{ -std::numeric_limits<double>::infinity() };

for (std::size_t k{0}; k < capacity; ++k) {

max_val = std::max(max_val, array[k]);

}

return max_val;

}

void sum(double array[], std::size_t capacity) {

double array_sum{ 0.0 };

for (std::size_t k{0}; k < capacity; ++k) {

array_sum = array_sum + array[k];

}

return array_sum;

}

7
ReduceReduce

Initial implementation

• Could we not get the user to pass:

– The initial value?

– The bivariate function that performs the reduction?

• The function declaration would be:
double reduce(double array[],

std::size_t capacity,

double x0,

std::function<double(double, double)> accumulator);

– We call the function an accumulator,

as it accumulates the information about the array

8
ReduceReduce

Initial implementation

• The implementation is also straightforward:

double reduce(double array[],

std::size_t capacity,

double x0,

std::function<double(double, double)> accumulator) {

double result{ x0 };

for (std::size_t k{0}; k < capacity; ++k) {

result = accumulator(result, array[k]);

}

return result;

}

9
ReduceReduce

Generalizing the range

• Have the algorithm work from

array[begin], ... , array[end - 1]

• This is rather easy, too:
double reduce(double array[],

std::size_t begin,

std::size_t end,

double x0,

std::function<double(double, double)> accumulator) {

double result{ x0 };

for (std::size_t k{begin}; k < end; ++k) {

result = accumulator(result, array[k]);

}

return result;

}

10
ReduceReduce

Example 1

• What does this code do?
int main() {

std::size_t N{ 10 };

double data{ 3.2, -5.4, 1.9, 8.6, 0.7,

6.5, 2.0, 7.1, -4.3, -9.8 };

std::cout << reduce(data, 0, N, 1.0, product) << std::endl;

return 0;

}

double product(double x, double y) {

return x*y;

}

11
ReduceReduce

Example 2

• What does this code do?
int main() {

std::size_t N{ 10 };

double data{ 3.2, -5.4, 1.9, 8.6, 0.7,

6.5, 2.0, 7.1, -4.3, -9.8 };

std::cout << reduce(data, 0, N,

std::numeric_limits<double>::infinity(), min)

<< std::endl;

return 0;

}

double min(double x, double y) {

if (x <= y) {

return x;

} else {

return y;

}

}

12
ReduceReduce

The standard library

• In the standard library, there is a

std::reduce(…)

in the header

#include <numeric>

– Again, despite it appearing there are many function evaluations,
a good compiler will eliminate these and simply inline these operations

– Rather than passing an array pointer and indices,
you pass the addresses of array[begin] and array[end]

13
ReduceReduce

The standard library

• The functions assumes that the accumulator is both
commutative and associative, so

accumulator(x, y) == accumulator(y, x)

accumulator(x, accumulator(y, z)) == accumulator(accumulator(x, y), z)

– For example:

(x + y) == (y + x)

(x + (y + z)) == ((x + y) + z)

max(x, y) == max(y, x)

max(x, max(y, z)) == max(max(x, y), z)

– This allows the implementation to be parallelized

14
ReduceReduce

Summary

• Following this lesson, you now:

– Understand what a reduction is

– Seen how to implement a reduction

– Looked at calculating the sum, minimum and maximum of an array

15
ReduceReduce

References

[1] https://en.cppreference.com/w/cpp/algorithm/reduce

16
ReduceReduce

Colophon

These slides were prepared using the Georgia typeface. Mathematical
equations use Times New Roman, and source code is presented using
Consolas.

The photographs of lilacs in bloom appearing on the title slide and
accenting the top of each other slide were taken at the Royal Botanical
Gardens on May 27, 2018 by Douglas Wilhelm Harder. Please see

https://www.rbg.ca/

for more information.

17
ReduceReduce

Disclaimer

These slides are provided for the ECE 150 Fundamentals of
Programming course taught at the University of Waterloo. The
material in it reflects the authors’ best judgment in light of the
information available to them at the time of preparation. Any reliance
on these course slides by any party for any other purpose are the
responsibility of such parties. The authors accept no responsibility for
damages, if any, suffered by any party as a result of decisions made or
actions based on these course slides for any other purpose than that for
which it was intended.

